The generator matrix

 1  0  1  1  1  1  1 X+3  1  1 2X  1  1  1  1 X+3  1  1  1  0  1  1  1 2X  1  1  1  6  1  1  1 X+3  1  1 2X+6  1 X+6  1  1  1  1  1  1 X+3  1  1  1 X+6  1  1  1  1  1  1  0 2X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 X+6  3  0  1  1 2X+3  3 2X+6 2X+6 2X  1
 0  1 2X+4  8 X+3 X+1 X+2  1 2X 2X+8  1  4  0 X+2 2X+4  1 X+3 X+1  8  1 2X  4 2X+8  1 X+6 X+7 2X+5  1  7 X+5  0  1 2X+6 2X+4  1  8  1  6 2X+7  5  0 2X+4  8  1  6 2X+7  5  1 X+3 2X X+1  4 X+2 2X+8  1  1 X+3 2X X+1  4 X+6 2X+6 X+7  7  6 2X+1 X+6 X+7  3 2X+7 X+6  1  5  6 X+7  X  7 X+8  1  1  1  7 2X+3  1  1  1  1  1 2X+5
 0  0  3  0  3  6  6  0  0  0  6  3  3  6  6  6  3  6  6  0  0  3  0  6  3  6  0  0  3  6  3  6  0  3  6  0  0  0  6  6  0  6  6  0  3  3  0  6  0  3  3  6  0  6  6  0  0  3  3  6  0  3  3  6  6  0  6  0  6  0  6  0  3  6  0  6  0  3  3  3  3  0  6  3  6  3  3  0  3
 0  0  0  6  6  3  6  6  6  3  0  3  0  3  0  6  3  6  0  3  3  6  0  3  0  0  6  6  0  0  6  3  0  6  6  0  3  6  6  6  3  3  3  0  3  3  3  0  3  0  0  0  3  3  0  6  6  6  6  3  0  3  3  6  6  0  3  3  0  6  6  3  6  3  0  0  6  0  0  6  3  0  6  0  6  3  6  0  0

generates a code of length 89 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 173.

Homogenous weight enumerator: w(x)=1x^0+378x^173+916x^174+972x^175+924x^176+686x^177+414x^179+400x^180+558x^182+590x^183+486x^184+156x^185+70x^186+4x^192+2x^198+2x^201+2x^216

The gray image is a code over GF(3) with n=801, k=8 and d=519.
This code was found by Heurico 1.16 in 1.37 seconds.